Etude de précision de la photogrammétrie terrestre appliquée aux levés topographiques

DEPLANCKE Michaël

Travail de fin d'études présenté en vue de l'obtention du grade de Bachelier en Construction - option Bâtiment

Année académique 2013 - 2014
Remerciements

J'aimerais tout d'abord remercier la personne sans qui rien de ceci n'aurait été possible, Monsieur Jean-Christophe TARGE, pour m'avoir proposé de découvrir la photogrammétrie durant ma dernière année d'études, pour son implication, ainsi que pour m'avoir apporté son soutien indéfectible et ses conseils avisés tout au long de mes recherches.

Je voudrais ensuite remercier Monsieur Patrice TOUSSAINT, Directeur de la Direction de l'Expertise Technique des Ouvrages au sein de la Direction générale opérationnelle des Routes et des Bâtiments du Service Public de Wallonie, pour m'avoir accueilli au sein de son équipe et pour avoir porté un intérêt certain aux relevés photogrammétriques.

Mes remerciements s'adressent aussi aux membres de l'Institut du Patrimoine Wallon, et plus particulièrement à Monsieur Thomas SOYEUR, pour m'avoir permis de prendre goût à la photogrammétrie.

J'aimerais enfin remercier Monsieur Jean-Claude DELVILLE, Madame Diana OVOD, l'entreprise Tegec, la société Faro, la société Sculpteo et les Compagnons de Franchimont pour m'avoir donné les moyens de réaliser ce travail de fin d'études.
Table des matières

REMERCIEMENTS .. 2

TABLE DES MATIÈRES .. 3

INTRODUCTION ... 7

1. **NOTIONS THÉORIQUES** .. 8

 1.1. **PHOTOGRAHAMÉTRIE** .. 8

 1.1.1. Définition ... 8

 1.1.2. Historique ... 8

 1.1.3. Approche pratique .. 9

 1.1.4. Applications .. 15

 1.2. **LEVÉS TOPOGRAPHIQUES** .. 21

 1.2.1. Levé par station totale ... 21

 1.2.2. Levé par GPS ... 21

 1.3. **LEVÉ PAR SCANNER LASER** .. 21

2. **MÂTÉRIEL UTILISÉ** ... 22

 2.1. **APPAREILS PHOTOGRAPHIQUES NUMÉRIQUES** .. 22

 2.1.1. Nikon Coolpix S3500 .. 22

 2.1.2. Sony NEX-7 ... 22

 2.2. **INSTRUMENTS DE MESURES** ... 23

 2.2.1. Station totale Topcon IS 303 .. 23

 2.2.2. GPS Trimble R6 modèle 3 .. 23

 2.2.3. Scanner laser Faro Focus 3D X 330 ... 24

 2.3. **ORDINATEURS** ... 24

 2.3.1. Ordinateur portable HP G62 Notebook .. 24

 2.3.2. Ordinateur de bureau Acer Aspire M1935 ... 25

 2.3.3. Ordinateur de bureau Priminfo .. 25

 2.3.4. Ordinateur de bureau Micro Fi .. 25

 2.4. **AUTRES INSTRUMENTS** .. 26

 2.4.1. Télémètre laser Bosch GLM80 .. 26

 2.4.2. Laser Sokkia LX34 ... 26

 2.4.3. Règle graduée .. 27

 2.4.4. Autres .. 27

 2.5. **LOGICIELS DE PHOTOGRAMMÉTRIE** .. 27

 2.5.1. Agisoft Photoscan Pro 0.9.1 et 1.0.4 .. 27

 2.5.2. Visual SFM 0.5.22 et MeshLab 1.3.3 ... 27

 2.6. **LOGICIELS DE POST-TRAITEMENT** ... 28

 2.6.1. 3D Systems Geomagic Verify Viewer 2014 ... 28

 2.6.2. 3D-Tool V10 Premium .. 28

 2.6.3. Autodesk Autocad 2014 et Autodesk Autocad Map3D 2013 28

 2.6.4. CloudCompare 2.5.4.1 .. 29

 2.6.5. Geomedia Covadis 13.0g ... 29

 2.6.6. Maxon Cinema4D R13 Studio .. 29

 2.6.7. PointCab 3.1 R0 .. 29

3. **TEST PRÉLIMINAIRE** ... 30
Table des matières

DEPLANCKE Michaël

3.1. OBJECTIFS .. 31
3.2. PRÉPARATION .. 32
 3.2.1. Description de l’objet .. 32
 3.2.2. Matériel utilisé .. 32
3.1. MESURES MANUELLES .. 33
3.2. MESURES PHOTOGRAMMÉTRIQUE ... 35
 3.2.1. Prise des photographies ... 35
 3.2.2. Test photogrammétrique 1: Agisoft Photoscan .. 37
 3.2.3. Test photogrammétrique 2: VisualSFM et MeshLab ... 42
3.3. MESURES DES MODÈLES NUMÉRIQUES .. 46
 3.3.1. Mesures du modèle numérique d’Agisoft Photoscan .. 46
 3.3.2. Mesures du modèle numérique de VisualSFM et MeshLab ... 48
3.4. TABLEAUX COMPARATIFS DES RÉSULTATS ... 50
3.5. CONCLUSIONS DU TEST .. 51

4. LOGICIEL D’OPTIMISATION DU NOMBRE DE PHOTOGRAPHIES ... 52
 4.1. BESOINS RESENIS SUITE AU TEST PRÉLIMINAIRE ... 52
 4.2. DESCRIPTION DU LOGICIEL ... 54
 4.3. VÉRIFICATION DU LOGICIEL ... 56
 4.4. CHOIX DU RECOUVRIMENT ... 59

5. LOGICIEL DE RECHERCHE DE PROPRIÉTÉS DES PHOTOGRAPHIES ... 62
 5.1. BESOINS RESENIS SUITE AU TEST PRÉLIMINAIRE .. 62
 5.2. DESCRIPTION DU LOGICIEL ... 62

6. INFLUENCES SUR LA RESTITUTION PHOTOGRAMMÉTRIQUE ... 64
 6.1.1. Influence du matériel informatique .. 64
 6.1.2. Influence des conditions de travail ... 66

7. RESTITUTION D’UN BÂTIMENT ... 76
 7.1. OBJECTIFS .. 77
 7.2. PRÉPARATION ... 78
 7.2.1. Description de l’objet ... 78
 7.2.2. Matériel utilisé .. 79
 7.3. MESURES À L’AIDE D’UNE STATION TOTALE .. 79
 7.3.1. Préparation sur terrain ... 79
 7.3.2. Prise des mesures .. 80
 7.3.3. Traitement des données ... 82
 7.4. MESURES PHOTOGRAMMÉTRIQUES ... 84
 7.4.1. Préparation sur terrain ... 84
 7.4.2. Prise des photographies .. 84
 7.4.3. Test photogrammétrique 1 : Agisoft Photoscan ... 86
 7.4.4. Test photogrammétrique 2 : VisualSFM et MeshLab .. 93
 7.5. COMPARAISONS DES MODÈLES NUMÉRIQUES ... 95
 7.5.1. Comparaison entre le modèle de référence et les modèles photogrammétriques (Agisoft Photoscan) 95
 7.5.2. Comparaison entre les nuages de points denses photogrammétriques (Agisoft Photoscan) 97
 7.6. CONCLUSIONS DU TEST .. 98
8. CALCUL D’UN VOLUME DE TERRE ET DE SA MASSE .. 101
 8.1. OBJECTIFS .. 102
 8.2. PRÉPARATION .. 103
 8.2.1. Description de l’objet ... 103
 8.2.2. Matériel utilisé .. 104
 8.3. MESURE À L’AIDE D’UN GPS ... 105
 8.3.1. Préparation sur terrain ... 105
 8.3.2. Prise des mesures ... 105
 8.3.2. Traitement des données .. 107
 8.4. MESURE À L’AIDE D’UNE STATION TOTALE ... 110
 8.4.1. Préparation sur terrain ... 110
 8.4.2. Prise des mesures ... 111
 8.4.3. Traitement des données .. 113
 8.4.4. Comparaison des mesures topographiques 115
 8.5. MESURES PHOTOGRAMMÉTIQUES ... 116
 8.5.1. Préparation sur terrain ... 116
 8.5.2. Prise des photographies ... 116
 8.5.3. Test photogrammétrie 1 : Agisoft Photoscan 118
 8.5.4. Test photogrammétrie 2 : VisualSFM et MeshLab 124
 8.6. MESURES À L’AIDE D’UN SCANNER LASER .. 126
 8.6.1. Préparation sur terrain ... 126
 8.6.2. Prise des mesures ... 127
 8.6.3. Traitement des données .. 129
 8.7. COMPARAISONS DES MODÈLES NUMÉRIQUES ... 133
 8.8. COMPARAISONS DES VOLUMES ET MASSES ... 134
 8.9. CONCLUSIONS DU TEST .. 135
9. COMPARATIFS DES COÛTS .. 137
 9.1. COÛTS DU MATÉRIEL ET DES LOGICIELS .. 137
 9.2. COÛTS DES LEVÉS DU BÂTIMENT ... 138
 9.3. COÛTS DES LEVÉS DU TAS DE TERRE ... 139
 9.4. CONCLUSIONS DES COÛTS .. 140
10. IMPRESSION 3D ... 141
 10.1. BESOINS ET RÉFLEXIONS .. 141
 10.2. MODÈLE NUMÉRIQUE DE BASE ... 141
 10.3. MESURES PHOTOGRAMMÉTIQUES .. 142
 10.4. COMPARAISON MANUELLE .. 143
 10.5. CONCLUSIONS DU TEST .. 144
11. SYSTÈME D’AXES PHOTOGRAMMÉTIQUE .. 145
 11.1. BESOINS ET RÉFLEXIONS .. 145
 11.2. DESCRIPTION DU SYSTÈME D’AXES .. 146
 11.3. DESCRIPTION DE LA MÉTHODE ... 146
 11.4. EXEMPLE DE MODÈLE NUMÉRIQUE .. 147
 11.5. MODIFICATIONS À APPORTER .. 150
 11.6. CONCLUSIONS DU TEST .. 150
12. CONCLUSIONS GÉNÉRALES .. 151

DEPLANCKE Michaël
Table des matières

Table de matières

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIBLIOGRAPHIE</td>
<td>153</td>
</tr>
<tr>
<td>TABLE DES FIGURES</td>
<td>159</td>
</tr>
<tr>
<td>ANNEXES</td>
<td>165</td>
</tr>
<tr>
<td>ANNEXE I : COMPARAISONS DES MODÈLES NUMÉRIQUES</td>
<td>165</td>
</tr>
<tr>
<td>Comparaisons des modèles numériques du bâtiment</td>
<td>166</td>
</tr>
<tr>
<td>Comparaison des modèles numériques du tas de terre</td>
<td>178</td>
</tr>
<tr>
<td>ANNEXE II : CHOIX DES PARAMÈTRES DE RECONSTRUCTION (AGISOFT PHOTOSCAN)</td>
<td>182</td>
</tr>
<tr>
<td>ANNEXE III : PARAMÉTRAGE DES APPAREILS PHOTOGRAPHIQUES NUMÉRIQUES</td>
<td>186</td>
</tr>
<tr>
<td>Paramètres particuliers</td>
<td>186</td>
</tr>
<tr>
<td>Paramètres généraux</td>
<td>187</td>
</tr>
<tr>
<td>ANNEXE IV : RAPPORTS AUTOMATIQUES DU LOGICIEL AGISOFT PHOTOSCAN</td>
<td>190</td>
</tr>
<tr>
<td>Rapport du test préliminaire</td>
<td>190</td>
</tr>
<tr>
<td>Rapports du test du bâtiment</td>
<td>194</td>
</tr>
<tr>
<td>Rapports du test du tas de terre</td>
<td>202</td>
</tr>
<tr>
<td>ANNEXE V : PARAMÉTRAGES DES LOGICIELS</td>
<td>210</td>
</tr>
<tr>
<td>Paramétrage du logiciel Agisoft Photoscan</td>
<td>210</td>
</tr>
<tr>
<td>Paramétrage du logiciel VisualSFM</td>
<td>211</td>
</tr>
<tr>
<td>Paramétrage du logiciel MeshLab</td>
<td>211</td>
</tr>
<tr>
<td>ANNEXE VI : PLANCHES DE CONTACT</td>
<td>212</td>
</tr>
<tr>
<td>Planche de contact du test préliminaire</td>
<td>212</td>
</tr>
<tr>
<td>Planches de contact du test bâtiment</td>
<td>213</td>
</tr>
<tr>
<td>Planches de contact du test tas de terre</td>
<td>217</td>
</tr>
<tr>
<td>Planche de contact du test impression 3D</td>
<td>219</td>
</tr>
<tr>
<td>Planche de contact du test système d’axes</td>
<td>220</td>
</tr>
<tr>
<td>LEXIQUE</td>
<td>221</td>
</tr>
<tr>
<td>GLOSSAIRE</td>
<td>221</td>
</tr>
<tr>
<td>LISTE DES ABRÉVIATIONS</td>
<td>223</td>
</tr>
</tbody>
</table>
Introduction

Chaque jour, de nombreuses découvertes sont réalisées dans le domaine du numérique. Elles sont parfois méconnues du grand public, ou réservées à certaines applications particulières. Le secteur de la construction, et en particulier la topographie, n’échappe pas à ce phénomène.

Au début de ma dernière année d’études, j’ai eu l’occasion de m’essayer à la photogrammétrie numérique. Grâce au développement des moyens de communication et à l’automatisation des traitements de données, davantage de personnes découvrent cette technique quotidiennement, tant dans un but privé que pour des applications professionnelles.

Ayant depuis toujours un faible pour la recherche et la création, j’ai choisi de développer ce sujet dans le cadre de mon travail de fin d’études. Bien que paraissant fort intéressante, cette technique pourtant séculaire n’en est encore aujourd’hui qu’à ses premiers balbutiements, ceci étant dû au renouvellement des méthodes de calcul lors de notre entrée dans l’ère du numérique. De nombreuses sociétés se sont alors spécialisées dans la création de logiciels, proposant des solutions toujours plus innovantes, mais au fonctionnement bien trop souvent méconnus. J’ai choisi de confronter deux solutions photogrammétriques, le logiciel Agisoft Photoscan et le couple VisualSFM-MeshLab, à trois méthodes de levé topographiques : la station totale, le GPS et le scanner laser, toutes trois également en constante évolution.

Mon premier objectif sera de déterminer si la photogrammétrie peut être utilisée dans le cadre de levés topographiques. Dans un second temps, je définirai les domaines d’emploi et les restrictions à appliquer à cette technique et aux logiciels utilisés. Pour ce faire, les conditions de travail seront identiques pour chaque méthode de mesure. Conjointement, les temps de traitements manuels et automatiques des différents tests seront comparés, de manière à mettre en avant les méthodes adaptées à chaque cas de figure.

1. **Notions théoriques**

Avant d'aborder les cas pratiques, il m'a semblé important de débuter par quelques notions théoriques simples sur la photogrammétrie. Suite à cela, pour permettre une vue d'ensemble des méthodes employées dans ce travail de fin d'études, les autres techniques de levé seront sommairement introduites.

1.1. **Photogrammétrie**

1.1.1. **Définition**

Le terme photogrammétrie provient de l'association de trois mots grecs : "photos" (lumière), "gramma" (quelque chose d'écrit) et "metreon" (mesure). C'est donc une technique permettant de reconstituer la forme et la position d'objets en trois dimensions sans les toucher, à partir d'un minimum de deux photographies en deux dimensions, en utilisant la parallaxe obtenue entre ces images acquises selon des points de vue différents. Sur ce principe, elle recopie la vision stéréoscopique humaine. Les résultats sont ensuite utilisés sous forme de points, de modèles en trois dimensions ou d'images. Ainsi, tout ce qui peut être photographié, peut être modélisé et mesuré. 1 2 3 4

1.1.2. **Historique**

Découverte par le colonel français Aimé Laussedat en 1859, qui l'exposa à l'Académie des Sciences, la photogrammétrie fut ensuite fortement développée en Allemagne, ce qui est encore visible aujourd'hui, la plupart des ouvrages traitant de ce sujet provenant d'Outre-Rhin. A cette époque, Albrecht Meydenbauer, un jeune architecte, développa la photogrammétrie appliquée aux relevés de bâtiments. Le principe de reconstitution est alors uniquement manuel, et s'appuie entre autres sur l'utilisation des différents points de fuite.

Un demi-siècle plus tard, Karl Pulfrich et Eduard von Orel inventèrent respectivement le stéréocomparateur et le stéréoautographe, donnant la possibilité de restituer la planimétrie et les courbes de niveau en continu, et marquant ainsi le début de la mécanisation du procédé. Durant les décennies qui suivirent, les instruments de restitution et les chambres de prise de vues furent améliorés et des modes de fonctionnement bien définis furent mis en place.

Survint ensuite la Première Guerre mondiale, et avec elle l'essor de l'aviation militaire et civile. La photogrammétrie aérienne et à grande échelle se développa et se généralisa alors, notamment via les orthophotographies dont nous nous servons toujours actuellement pour établir par exemple les cartes topographiques.

Peu après 1950, la photogrammétrie subit sa plus grande modification avec l'apparition des techniques de calcul électronique, prenant une orientation plus industrielle, passant alors du processus analytique au processus numérique. Les ordinateurs peuvent actuellement effectuer un grand nombre d'opérations, nécessitant jusqu'alors divers moyens optiques et mécaniques. De nombreux logiciels toujours plus performants sont aujourd'hui conçus, parallèlement à la constante évolution des ordinateurs et des appareils de prise de vues, dévoilant peu à peu cette technique à un plus grand public.

1.1.3. **Approche pratique**

1.1.3.1. **Couple stéréoscopique**

Quel que soit le matériel utilisé et le but recherché, la présence d'un couple stéréoscopique est le point de départ sans lequel aucun traitement n'est possible. Tout comme notre vision binoculaire naturelle nous permet de percevoir ce qui nous entoure en trois dimensions grâce à la fusion des images rétiniennes capturées par nos yeux, deux clichés d'un même objet pris de points de vue différents et possédant un minimum de points correspondants suffisent à la création d'un couple stéréoscopique.

D'une manière semblable à nos yeux percevant chacun une image différente et décalée d'un même objet, les photographies doivent être prises de points de vue distincts. Toutefois, la distance entre les deux images ne

Notions théoriques
peut être trop importante, sans quoi celles-ci seront considérées comme non apparentées.

1.1.3.2. Principes généraux

Chaque jour, de nouvelles tâches sont confiées à des ordinateurs, dans le but d'alléger le travail humain et d'augmenter la rentabilité. Il n'est donc pas surprenant de voir le nombre toujours grandissant de logiciels permettant un traitement photogrammétrique plus ou moins satisfaisant et selon diverses méthodes. Les deux logiciels présentés dans ce travail sont donc loin d'être les seuls, ou même les meilleurs. Je les ai tout d'abord choisis car ils sont très répandus et fort appréciés par leurs utilisateurs. Un second point important est que ces logiciels permettent un traitement automatisé des séries de photographies. En effet, d'autres solutions obligent l'utilisateur à traiter les images par paires ou à relier divers points manuellement. La méthode générale présentée ici vaut bien sûr pour les deux logiciels choisis, mais ne s'applique donc pas exactement à tous les logiciels existants, bien que le principe reste identique.

La première étape consiste à détecter et extraire certaines caractéristiques des photographies. L'objectif est d'identifier les points intéressants dans chaque image. Cette phase est entre autres réalisée grâce à la méthode SIFT développée par D. Lowe. Les points caractéristiques extraits grâce cette méthode sont fortement distinctifs et invariables aux différentes transformations et changements de luminosité. Pour commencer, l'algorithme identifie les points potentiels, en isolant les points se trouvant aux extrêmes de la différence de gaussiennes. La situation dans l'espace de chaque point est alors calculée, les points non stables sur les divers clichés (et donc imprécis) étant rejetés. Une ou plusieurs orientations sont alors assignées à chaque point caractéristique, qui est décrit sur base de ces orientations, ce qui empêche leur rotation dans l'espace.

Ensuite, il est nécessaire de réaliser la mise en correspondance des points homologues, de manière à former par incrémentations successives un seul ensemble homogène. La projection d'un même point est alors recherchée sur toutes les images, chaque point caractéristique d'une image étant testé avec tous les autres points de chaque image en comparant leurs descriptions respectives, et plus particulièrement en calculant la distance qui les sépare. Une faible distance entre deux points indique que ces derniers sont proches et donc similaires, mais cela ne signifie pas forcément qu'ils représentent un même objet. Ceci indique uniquement que les deux points possèdent la ressemblance la plus élevée de toutes les caractéristiques traitées. Afin d'éviter des erreurs, notamment lors de scènes répétitives ou d'une variation d'intensité, mais également dans le but d'associer plus précisément les points, une approximation des plus proches voisins

Notions théoriques
Est réalisée. Le point étudié est englobé dans une fenêtre de recherche (ou de corrélation) qui prend alors en compte les valeurs radiométriques des pixels environnants. Après sa définition dans l'image 1, cette fenêtre se déplace dans l'image 2. Après chaque déplacement, le score de corrélation est calculé sur base de l'intensité moyenne et de l'écart-type. Un score élevé indique une ressemblance maximale. Si le résultat est inférieur à un seuil donné, le point et son voisin sont acceptés. Sinon, ils sont rejettés. Plus la taille choisie pour la fenêtre de recherche est élevée (dans une certaine marge), plus les résultats se font rares et plus le risque d'erreur diminue.

Figure 2 : Exemple de délimitation d'une fenêtre de recherche pour un pixel donné dans un couple stéréoscopique (Source : personnelle)
Subséquemment intervient l'estimation des paramètres de l'appareil photographique numérique (APN). Etant donné un ensemble de photographies, le but de cette étape est de récupérer simultanément la géométrie en trois dimensions de la scène et les informations de l'APN. Ces dernières incluent les paramètres externes (position et orientation des images au moment de la prise de vue) et internes (paramètres de calibration de l'APN). Tout ceci est à nouveau accompli grâce à la technique SIFT. Au final, les images sont redressées de manière à ce que les vecteurs reliant chaque paire de points de deux images soient parallèles, ce qui supprime les distorsions des photographies et permet de calculer les distances réelles.

Dans ce processus de reconstruction, qui se déroule en testant chaque photographie avec toutes les autres, la sélection de la première paire d'images est hautement importante. Les photographies choisies doivent posséder un grand nombre de correspondances, mais également se trouver à une relativement grande distance l'une de l'autre, afin de s'assurer que la localisation du point observé est correctement estimée. Les logiciels utilisent bien souvent les deux premières images importées pour entamer cette étape.

L'estimation des paramètres externes pour cette paire initiale se déroule comme suit : tout d'abord, l'algorithme SFM oriente toutes les photographies de manière relative et estime les paramètres internes de l'APN, ce qui permet par la suite à la matrice essentielle d'être estimée grâce à l'algorithme des cinq points. Ensuite, la matrice de projection peut être extraite en décomposant la matrice essentielle. Les points caractéristiques visibles sur les deux images sont alors triangulés, de manière à donner un ensemble de points en trois dimensions. Une fois que la structure de la scène et les informations de l'APN ont été estimées pour la première paire d'images, tout cela est encore affiné en utilisant le Bundle Adjustment. D'autres photographies sont ensuite ajoutées à l'optimisation l'une après l'autre, celle qui possède la meilleure association (qui partage le plus grand nombre d'emplacements 3D déjà estimés dans d'autres images) étant choisie à chaque fois. Ensuite, le Bundle Adjustment est à nouveau utilisé pour affiner les résultats et minimiser l'erreur de projection. Cette procédure est répétée pour chaque image. Une image est ajoutée uniquement si elle partage un nombre suffisant de correspondances avec une ou plusieurs autres.

Une fois que les emplacements des points caractéristiques sont connus dans les photographies et que ces dernières sont ajustées entre elles, un premier nuage de points en trois dimensions est créé. Dans un second temps, un nuage de points plus dense peut être calculé, en utilisant cette fois chaque pixel de chaque cliché, grâce à l'algorithme CMVS par exemple. La représentation est alors plus détaillée, et un maillage reliant tous ces points est prêt à être créé.

D'autres actions sont effectuées parallèlement, permettant par exemple de ne pas prendre en compte les objets non rigides (un passant, une branche
d’arbre...). Les points peuvent également être colorés, sur base des couleurs des pixels utilisés pour en définir les positions.

Toutes ces méthodes ne font pas exception à l’une des règles de base de la numérisation 3D, selon laquelle le temps de traitement des données 3D est toujours plus important que le temps requis pour la collecte des données. 8 9 10

1.1.3.3. Paramètres de l’appareil photo numérique

Les paramètres de l’appareil photo numérique sont répartis en deux catégories : les paramètres externes, qui décrivent la position et l’orientation des images au moment de la prise de vue, et les paramètres internes de calibration de l’APN. Ils sont absolument nécessaires pour la création du modèle numérique.

- Orientation externe : elle est déterminée par l’emplacement et l’orientation de l’APN au moment de la prise de vue. Elle peut être relative ou absolue :
 - Relative : se trouvant dans un espace sans échelle ni orientation. En général, la position de la première photographie est prise comme origine du système de coordonnées, les suivantes étant calculées par rapport à elle.
 - Absolue : se trouvant dans un système de coordonnées connu, à une échelle connue.

- Orientation interne : elle est déterminée par les quatre paramètres de calibration de l’APN suivants :
 - La distance focale : elle sépare le foyer du centre de la lentille.
 - Le centre principal de symétrie : ce point se trouve à l’intersection de l’axe optique et du capteur photosensible. La distorsion y est nulle.
 - Le centre principal d’autocollimation : il correspond au centre de l’image formée à travers l’objectif par un faisceau de rayons parallèles entre eux et perpendiculaires au fond de la chambre. La fabrication du système optique n’étant pas parfaite, il ne se trouve pas réellement au centre de l’image.

8 DONEUS, M. From deposit to point cloud, a study of low-cost computer vision approaches for the straightforward documentation of archaeological excavations [En ligne]. https://biblio.ugent.be/publication/2038452 (consulté le 22 Avril 2014).
Etude de précision de la photogrammétrie terrestre appliquée aux levés topographiques

- Le polynôme de distorsion : les distorsions sont dues au non-parallélisme entre les rayons. Elles peuvent être classées en deux catégories :
 - Distorsion tangentielle : elle est due au mauvais ajustement des lentilles par rapport à l’axe optique, et n’est que rarement prise en compte.
 - Distorsion radiale : elle est due à l’éloignement du diaphragme par rapport au centre optique. Elle se mesure en pourcentage, et peut être de type "barillet" (positive, grand angle) ou "coussinet" (négative, zoom à longue focale), voire présenter un mélange des deux.

\[\text{Sans distorsion}\]

\[\text{Distorsion en barillet}\]

\[\text{Distorsion en coussinet}\]

Figure 3 : De haut en bas et de gauche à droite : Grille sans distorsion, Avec distorsion en barillet, Avec distorsion en coussinet (Source : personnelle)

13 SCOLLAR, I. RadCor 2.06 [En ligne]. http://www.uni-koeln.de/~al001/radcor.html (consulté le 13 Mai 2014).

Notions théoriques
1.1.4. Applications

Au fur et à mesure de son évolution, la photogrammétrie s'est vue utilisée dans de multiples domaines. Afin de classer ses différentes applications, il est habituellement choisi de prendre en compte l'emplacement de l'appareil photographique durant la prise de vue. Ainsi, deux grands domaines se démarquent assez facilement : les photogrammétries aérienne et terrestre (ou rapprochée).

La photogrammétrie aérienne est caractérisée par un appareil photographique monté sur un véhicule volant (avion, hélicoptère...). Les images sont généralement prises verticalement, vers le sol, en suivant un plan de vol défini au préalable.

La photogrammétrie terrestre, quant à elle, peut également être définie de rapprochée. En effet, l'appareil est dans ce cas habituellement situé à une distance de l'objet comprise entre 1 et 100 mètres. C'est le type de photogrammétrie le plus couramment utilisé, car il demande peu de moyens et est facile à mettre en œuvre.

Néanmoins, ce classement reste subjectif. En effet, grâce à l'essor technologique de notre société moderne, la photogrammétrie, bien que peu connue, est utilisée dans des domaines tantôt communs, tantôt plus improbables. Tout d'abord, citons par exemple la photogrammétrie spatiale, réalisée à l'aide de clichés capturés par un satellite, ou encore la photogrammétrie sous-marine. Les moyens et paramètres sont ainsi souvent différents, mais ont pour but analogue la création d'un modèle numérique en trois dimensions. Ensuite, le drone civil, en vogue ces dernières années, pourrait être classé dans plusieurs catégories. C'est certes un engin volant, mais sa faible vitesse de vol et sa basse altitude peuvent entre autres l'apparenter à la photogrammétrie rapprochée.

Les usages de la photogrammétrie sont nombreux et variés : reconstitution d'œuvres d'art en vue de leur sauvegarde, modélisation d'objets, médecine légale, archéologie, étude de variations dans le temps, scène de crime, calcul de volume...

Une application majeure de la photogrammétrie, utilisée par de nombreuses personnes chaque jour, est la création de cartes et de plans sur base d'orthophotographies. Ces dernières consistent en un assemblage de photographies redressées, ce qui rend l'ensemble mesurable et lui permet d'être superposé à d'autres couches (tracés par ordinateur par exemple), servant ainsi de fonds cartographiques dans les Systèmes d'Information Géographique (SIG). La troisième dimension est ici en quelque sorte mise de côté, le résultat n'étant au
final qu'une image plane. Ce type de cliché est plus communément aérien, mais sert également au mesurage et à la visualisation de façades, pans rocheux...

Ci-après sont présentés quelques exemples d'applications de la photogrammétrie terrestre rapprochée appliquée au secteur de la construction. Ces modèles texturés et maillages simples, comme d'autres par la suite, ont été générés avec le logiciel Agisoft Photoscan, non pour mettre ce dernier en avant, mais pas simple souci de facilité. Les photographies ayant permis de réaliser les modèles numériques ont été prises à l'aide d'un APN Nikon Coolpix S3500.

- Déformation

Figure 4 : De haut en bas : Muret en pierres, Coupe dans le muret (Parc de Séroule, 4800 Verviers) (bien classé au patrimoine de la Région Wallonne) (Source : personnelle)

- Nombre de photographies : 29
- Nombre de faces : 14 625 493

14 *Agisoft - Photogrammetry* [En ligne],
Notions théoriques

- Endroit dangereux ou peu accessible

 \begin{figure}
 \centering
 \includegraphics[width=\textwidth]{ancienne_tour_en_partie_effondree.png}
 \caption{Ancienne tour en partie effondrée (Parc de la Tourelle, 4800 Verviers) (Source : personnelle)}
 \end{figure}

 - Nombre de photographies : 9
 - Nombre de faces : 5 650 386

- Endroit sombre

 \begin{figure}
 \centering
 \includegraphics[width=\textwidth]{sous Terrain du Fort de Charlemont.png}
 \caption{Sous-terrain du Fort de Charlemont (08600 Givet (France)) photographié dans le noir complet avec flash (Source : personnelle)}
 \end{figure}

 - Nombre de photographies : 18
 - Nombre de faces : 11 767 247
- Masse et volume

Figure 7 : Rocher décoratif (Parc de Séroule, 4800 Verviers) (Source : personnelle)

- Nombre de photographies : 14
- Nombre de faces : 2 925 740

- Modèle numérique de terrain et courbes de niveau

Figure 8 : De haut en bas : Sentier en terre, Courbes de niveau du sentier (Source : personnelle)

- Nombre de photographies : 35
- Nombre de faces : 13 640 772
Modélisation rapide texturée

Figure 9 : Façade d'une maison d'habitation (Rue des Carmes, 4800 Verviers) (bien classé au patrimoine de la Région Wallonne) (Source : personnelle)

- Nombre de photographies : 5
- Nombre de faces : 1 668 226

Orthophotographie

Figure 10 : Façade de l'Hôtel de Ville de Verviers (Place du Marché, 4800 Verviers) (bien classé au patrimoine de la Région Wallonne) (Source : personnelle)

- Nombre de photographies : 5
- Nombre de faces : 1 810 193
Sculpture ou élément architectural complexe

Figure 11 : Demi-fronton de l’école manufacturière (Rue de Séroule, 4800 Verviers) (Source : personnelle)

- Nombre de photographies : 10
- Nombre de faces : 3 192 273
1.2. Levés topographiques

1.2.1. Levé par station totale

Une station totale, ou tachéomètre, est un instrument servant à la mesure d'angles verticaux et horizontaux et de distances. La mesure des distances se fait à l'aide d'un télémètre incorporé à l'appareil, via un prisme réflecteur ou directement sur l'objet. Les stations totales actuelles suivent automatiquement l'utilisateur, ce qui réduit considérablement le temps de travail.

1.2.2. Levé par GPS

Le fonctionnement du GPS est assez simple. En connaissant les caractéristiques de l'onde sinusoïdale modulée envoyée par un satellite, on peut très facilement calculer une distance. Cette distance se propage uniformément autour du satellite, formant une sphère. En prenant un minimum de trois satellites, l'intersection des sphères donne deux points, dont un se situe dans l'espace et est de ce fait éliminé, le point restant définissant la position recherchée sur Terre. Plus la durée de mesure est importante, plus la mesure est précise. Différentes altérations du signal sont néanmoins à prendre en compte, mais elles ne seront pas abordées ici.

En Wallonie, le réseau WALCORS permet d'utiliser les signaux GPS et GLONASS et de les transmettre via 23 antennes réparties sur le territoire. Les trois antennes les plus proches sont alors utilisées pour calculer une station virtuelle de référence capable d'apporter des paramètres de correction en continu à l'utilisateur.

1.3. Levé par scanner laser

Le scanner laser émet un rayon laser qui est réfléchi au contact de l'objet. La distance est mesurée grâce au décalage de phase entre le rayon émis et le rayon reçu. Dans le même temps, le scanner pivote à 360 degrés et le miroir modifie l'angle vertical du rayon laser. Les angles et la distance sont calculés simultanément.

15 TARGE, J-C. Cours de Topographie - Partie 8 : GPS (2ème Bachelier en Construction), Liège, HEPL, 14 Mai 2014, 56 pages.
2. **Matériel utilisé**

2.1. **Appareils photographiques numériques**

2.1.1. **Nikon Coolpix S3500**

- Nombre de pixels effectifs : 20.1 millions
- Capteur d'image : DTC 1/2.3 pouce
- Objectif : Nikkor avec zoom optique 7x
- Longueur de focale : 4,7 à 32,9 mm (angle de champ équivalent à celui d'un objectif de 26 à 182 mm au format 24 x 36)
- Ouverture maximale : f/3.4 - 6.4
- Sensibilité : 80 à 1600 ISO
- Compression : Jpeg
- Couleurs : sRGB 24 bit
- Bits compressés par pixel : 4
 - APN personnel

Cet APN compact est simple d'utilisation, et possède la définition la plus élevée de sa gamme de prix. Possédant également un modèle inférieur, j'ai choisi d'acheter ce nouvel appareil, plus performant, et de l'utiliser dans le cadre de mon travail de fin d'études.

Prix : 73.55€ HTVA 17

2.1.2. **Sony NEX-7**

- Nombre de pixels effectifs : 24.3 millions
- Capteur d'image : CMOS HD Exmor® APS
- Objectif : Sony SEL 1855
- Longueur de focale : 18 à 55 mm
- Ouverture maximale : f/3.5 - 5.6
- Sensibilité : 100 à 16000 ISO
- Compression : Jpeg
- Couleurs : sRGB 24 bit
- Bits compressés par pixel : 3
 - APN en prêt

17 *Nikon Coolpix S3500 [En ligne].*
http://download3.nikonimaging.com/archive1/OhG4u00Ekinw005fYIG51jucoT65/S3500RM(Fr)02.pdf (consulté le 02 Janvier 2014).
Grâce à sa haute définition et ses paramètres professionnels, cet APN permet de réaliser des photographies de qualité, même par faible luminosité.

Prix : 839.00€ HTVA

2.2. **Instruments de mesures**

2.2.1. **Station totale Topcon IS 303**

- Marque : Topcon
- Modèle : IS303
- Contrôleur : Topcon FC 250
- Antenne : Topcon WT-100
- Zoom : 30x
- Précision angulaire : 0.001 grade
- Précision des distances avec prisme (fine 0.2mm) : ± 2mm + 2ppm
- Précision des distances sans prisme (fine 0.2mm) : ± 3mm
- Distance maximale : 2000 m

Prix : 30 000.00€ HTVA

2.2.2. **GPS Trimble R6 modèle 3**

- Marque : Trimble
- Modèle : R6 modèle 3
- Carnet de terrain : Trimble TSC3
- Précision du positionnement GNSS statique :
 - Haute précision (horizontal) : 3mm + 0.1ppm
 - Haute précision (vertical) : 3.5mm + 0.4ppm
 - Rapide (horizontal) : 3mm + 0.5ppm
 - Rapide (vertical) : 5mm + 0.5ppm

Etude de précision de la photogrammétrie terrestre appliquée aux levés topographiques

- Précision du positionnement cinématique en temps réel :
 ● Horizontal : 8mm + 1ppm
 ● Vertical : 15mm + 1ppm

Prix : 22 000.00€ HTVA

2.2.3. Scanner laser Faro Focus3D X 330

- Marque : Faro
- Modèle : Focus3D X 330
- Portée : entre 0.6 et 330 m
- Incertitude de mesure à 10m : ± 2mm
- Laser : classe 1
- Vitesse de rotation du miroir : 5820 tours par minute
- Profil utilisé :
 ● Extérieur < 20m
 ● Couleurs : oui
 ● Nombre de photographies par scan : 84
 ● Points par scan : 28 millions
 ● Distance entre les points (à 10m) : 7.67mm

Prix : 44 900.00€ HTVA

2.3. Ordinateurs

2.3.1. Ordinateur portable HP G62 Notebook

- Fabricant : Hewlett-Packard
- Processeur : Intel® Core™ i3 CPU M370 @ 2.40GHz
- Cores : 4
- Mémoire installée (RAM) : 4Go (3.80Go utilisable)
- Type du système d’exploitation : Windows© 7 64bits (édition familiale Premium)
- Carte graphique : Intel® HD Graphics
- Indice d’évaluation : 3.9/10
 ● Ordinateur personnel

Matériel utilisé
2.3.2. **Ordinateur de bureau Acer Aspire M1935**

- Fabricant : Acer
- Processeur : Intel® Core™ i3-2120 CPU @ 3.30GHz
- Cores : 4
- Mémoire installée (RAM) : 8Go
- Type du système d'exploitation : Windows© 7 64bits (édition familiale Premium)
- Carte graphique : AMD Radeon HD 7470
- Indice d'évaluation : 5.1/10
 - Ordinateur personnel, utilisé pour réaliser l'ensemble des traitements photogrammétriques.

2.3.3. **Ordinateur de bureau Priminfo**

- Fabricant : Priminfo
- Processeur : Intel® Core™ i7-3770 CPU @ 3.40GHz
- Cores : 8
- Mémoire installée (RAM) : 16Go
- Type du système d'exploitation : Windows© 7 64bits (édition professionnelle)
- Carte graphique : Nvidia Quadro 4000
- Indice d'évaluation : non disponible
 - Ordinateur en prêt

2.3.4. **Ordinateur de bureau Micro Fi**

- Fabricant : Micro Fi
- Processeur : Intel® Xeon® CPU E5630 @ 2.53GHz
- Cores : 16
- Mémoire installée (RAM) : 16Go
- Type du système d'exploitation : Windows© 7 64bits (édition professionnelle)
- Carte graphique : Nvidia Quadro FX 3800
- Indice d'évaluation : 5.9/10
 - Ordinateur en prêt
2.4. **Autres instruments**

2.4.1. **Télémètre laser Bosch GLM80**

- Plage de mesure de distances : de 0.05 à 80 m
- Précision de mesure de distances : ± 1.5 mm
- Plus petite unité d'affichage de distances : 0.1 mm
- Plage de mesure d'inclinaisons : de 0 à 360 degrés
- Précision de mesure d'inclinaisons : 0.2 degrés
- Plus petite unité d'affichage d'inclinaisons : 0.1 degré
- Classe laser : 2
- Temps de mesure moyen : < 0.5 s

Instrument de mesure utilisé pour déterminer la distance séparant l'APN de l'objet lors des tests photogrammétriques.

Prix : 189.95€ HTVA ²²

2.4.2. **Laser Sokkia LX34**

- Distance d'opérabilité : 40m (avec détecteur)
- Angle de projection du laser : 120°
- Précision : ± 2mm à 10m
- Epaisseur du laser : 2mm à 10m
- Plage de nivellement automatique (pendulaire) : ± 2.5°
- Classe laser : 2

Instrument de mesure utilisé pour déterminer la hauteur du cône de sable durant le test préliminaire.

Prix : 475.00€ HTVA ²³

2.4.3. **Règle graduée**

- Longueur : 150cm (125cm gradués)
- Graduations : tous les 5cm
- Précision : 1mm

Règle en aluminium utilisée pour déterminer l'échelle des modèles photographiés. Pour une différence de température de 10°C, sa dilatation thermique vaut 0.36mm, et peut donc être considérée comme négligeable (prenez en compte le coefficient de dilatation moyen de l'aluminium, soit 24 x 10⁻⁶ K⁻¹).

2.4.4. **Autres**

Diverses cibles ont entre autres été utilisées. Leurs caractéristiques respectives seront détaillées lors des différents tests.

2.5. **Logiciels de photogrammétrie**

2.5.1. **Agisoft Photoscan Pro 0.9.1 et 1.0.4**

Logiciel de photogrammétrie professionnel ne nécessitant aucun paramétrage préalable de l'APN, utilisé pour la création, la modification et l'export de modèles numériques en trois dimensions à partir de photographies numériques. Les deux tests photogrammétriques principaux (bâtiment et tas de terre) ont été réalisés à l'aide de la version 1.0.4 du logiciel car ils ont nécessité la modification de nuages de points denses. Les paramètres utilisés sont cependant identiques à la version antérieure.

Prix : 3499.00€ HTVA

2.5.2. **Visual SFM 0.5.22 et MeshLab 1.3.3**

Ces deux logiciels gratuits de photogrammétrie numérique doivent être associés pour générer un modèle en trois dimensions sur base de photographies.

- VisualSFM : création de nuages de points à partir de photographies numériques, pour une utilisation ultérieure sur le logiciel MeshLab.

24 *Agisoft Photoscan Pro* [En ligne].

Matériel utilisé
- **MeshLab** : création et export de modèles numériques en trois dimensions.
 Prix : gratuit

2.6. **Logiciels de post-traitement**

2.6.1. **3D Systems Geomagic Verify Viewer 2014**

Logiciel utilisé pour la visualisation et la mesure aisées de modèles numériques en trois dimensions, même pour des fichiers de grande taille (réduction de 3% de la taille du fichier sans perte de précision).

Prix : gratuit

2.6.2. **3D-Tool V10 Premium**

Logiciel utilisé pour la visualisation et la mesure aisées de modèles numériques en trois dimensions.

Prix : 600.00€ HTVA

2.6.3. **Autodesk Autocad 2014 et Autodesk Autocad Map3D 2013**

Logiciel de dessin assisté sur ordinateur en deux et trois dimensions, utilisé pour la création des modèles numériques à partir des données recueillies par une station totale ou un GPS.

Prix : 4775.00€ HTVA

Matériel utilisé
2.6.4. **CloudCompare 2.5.4.1**

Logiciel de traitement de nuages de points et de surfaces utilisé pour comparer les différents modèles numériques entre eux.

Prix : gratuit \(^{30}\)

2.6.5. **Geomedia Covadis 13.0g**

Logiciel de topographie et d'infrastructure utilisé pour la génération des modèles numériques de terrain à partir des données d'instruments topographiques (station totale et GPS).

Prix : 3000.00€ HTVA \(^{31}\)

2.6.6. **Maxon Cinema4D R13 Studio**

Logiciel d'animation utilisé pour le rendu de modèles numériques photogrammétriques pour un export image ou vidéo, ainsi que pour la création de modèles de comparaison.

Prix : 3000.00€ HTVA \(^{32}\)

2.6.7. **PointCab 3.1 R 0**

Logiciel utilisé pour la visualisation et la mesure aissées de nuages de points.

Prix : 4980.00€ HTVA \(^{33}\)

\(^{30}\) *CloudCompare 2.5.4.1* [En ligne]. http://www.danielgm.net/cc/ (consulté le 08 Mai 2014).

3. **Test préliminaire**

Figure 14 : Plateau tournant et cône de sable du test préliminaire (Source : personnelle)
3.1. **Objectifs**

Le test préliminaire présente différentes finalités :

- Etablir une marche à suivre de base et définir certaines conditions d'utilisation en vue d'augmenter le rendement lors des tests ultérieurs. Cela devrait également permettre de diminuer les erreurs possibles, que ce soit lors de la prise des photographies ou du traitement.
- Donner une première idée de la précision relative des différents logiciels, dans des conditions contrôlées. Il sera ainsi plus facile de définir la provenance d'éventuelles erreurs.

Les mesures définissant les résultats de ce travail de fin d'études étant la mesure d'un volume et la restitution photogrammétrique d'un bâtiment, j'ai choisi d'orienter ce test préliminaire vers le calcul du volume et de la masse d'un petit tas de sable. En effet, cette opération est plus compliquée à réaliser et moins facilement vérifiable en matière de précision, et elle nécessite davantage d'étapes. Tous ceci ne peut donc être que bénéfique dans le cadre des deux buts fixés ci-dessus.

J'ai choisi de réaliser ce test préliminaire sur un cône de sable pour plusieurs raisons. Tout d'abord, ce matériau ne possède aucun des désavantages pouvant amener à un échec du traitement photogrammétrique automatisé : il n'est par exemple ni réfléchissant, ni transparent, ni (à cette échelle) de couleur unie. Ensuite, son volume et sa masse sont facilement définissables manuellement.

Les différents calculs ont été réalisés au moyen du logiciel Microsoft Excel, dont les résultats sont fournis sous forme de tableaux.

Les paramétrages des logiciels proviennent d'exemples suivis ou de travaux antérieurs, et sont expliqués dans l'annexe V.

Le test préliminaire s'est déroulé selon les étapes suivantes :

- Préparation du matériel
- Prise des photographies
- Mesures manuelles
- Création et mesures des modèles numériques
- Mesures annexes des modèles numériques
3.2. **Préparation**

3.2.1. **Description de l'objet**

Une quantité non mesurée de sable de Rhin sec a été prélevée dans un sac de 40kg et déposée doucement au centre d'un plateau tournant en bois, de manière à former un cône uniforme.

3.2.2. **Matériel utilisé**

![Figure 15 : Dispositif du test préliminaire (Source : personnelle)](image)

- a. Plateau tournant de 50cm de diamètre, découpé dans un panneau multiplex de 12mm d'épaisseur, sur lequel des repères ont été tracés tous les 5 degrés. Ce dispositif permet d'effectuer une rotation contrôlée de l'objet, afin de répartir équitablement les photographies.
- b. Quantité non mesurée de sable de Rhin sec.
- c. Trépied, disposant l'APN à environ 55cm au-dessus du tas de sable.
- d. Appareil photographique numérique Nikon Coolpix S3500.
- e. Six cibles, dessinées sur le logiciel Autocad, imprimées sur papier blanc, puis découpées et collées sur les bords du disque.
- f. Ampoule incandescente de 100 Watts, positionnées à environ 2m au-dessus du sable, afin de supprimer les ombres portées par la lumière naturelle provenant de la fenêtre proche.
3.1. **Mesures manuelles**

3.1.1.1. *Calcul du volume*

La hauteur du cône a été mesurée grâce au laser Sokkia, positionné au niveau du sommet du tas, et à une équerre. Le diamètre a quant à lui été mesuré en deux endroits grâce à une règle et deux équerres, faisant office de pied à coulisse. La précision des différentes mesures est de l'ordre du millimètre.

![Figure 16 : Mesure de la hauteur du cône de sable (Source : personnelle)](image1)

Figure 16 : Mesure de la hauteur du cône de sable (Source : personnelle)

![Figure 17 : Mesure du diamètre du cône de sable (Source : personnelle)](image2)

Figure 17 : Mesure du diamètre du cône de sable (Source : personnelle)

Formule du volume d'un cône : \(\frac{1}{3} \pi r^2 h \)

(Avec \(r \) = le rayon de la base, et \(h \) = la hauteur du cône)

<table>
<thead>
<tr>
<th>Hauteur du cône</th>
<th>5.5 cm = 0.055 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamètre de la base</td>
<td>(19.4 + 20.0) / 2 = 19.7 cm = 0.197 m</td>
</tr>
<tr>
<td>Rayon de la base</td>
<td>0.197 / 2 = 0.099 m</td>
</tr>
<tr>
<td>Angle de frottement interne</td>
<td>Arctg (0.055/0.099) = 29.18 degrés</td>
</tr>
<tr>
<td>Vérification</td>
<td>29.18 proche de 30 degrés (sable sec)</td>
</tr>
<tr>
<td>Volume</td>
<td>0.000559 m³</td>
</tr>
</tbody>
</table>

Test préliminaire
3.1.1.2. Mesure de la masse

La mesure de la masse de sable a été effectuée au moyen d'une balance de ménage Proline KSR1, d'une capacité maximale de 5 kilogrammes, avec une précision d'un gramme.

![Figure 18: De gauche à droite : Mesure de la masse du bocal vide, Du bocal contenant le sable (Source : personnelle)](image)

Masse totale mesurée :	1.423 kg
Masse du bocal :	0.479 kg
Masse du tas de sable :	1.423 - 0.479 = 0.944 kg

Masse volumique apparente du sable : 0.944 / 0.000559 = 1689.306 kg/m³
Vérification : 1689.306 proche de 1600 kg/m³ (sable sec)

3.1.1.3. Durée du test manuel

<table>
<thead>
<tr>
<th>Etapes</th>
<th>Durées</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM (*)</td>
<td>TA (*)</td>
</tr>
<tr>
<td>Calcul du volume Mesure de la masse</td>
<td>0:10:00 0:05:00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0:15:00 0:00:00</td>
</tr>
<tr>
<td>TOTAL GLOBAL</td>
<td>0:15:00 0:00:00</td>
</tr>
</tbody>
</table>

(*) TM : Traitement Manuel ; TA : Traitement Automatique

34 DEJAEGERE, J. *Cours de Stabilité (1er Bachelier en Construction)*, Liège, HEPL, 01 Septembre 2011, p.25.
3.2. Mesures photogrammétrique

3.2.1. Prise des photographies

3.2.1.1. Positionnement des cibles

Six cibles dessinées sur le logiciel Autocad ont été collées sur le plateau tournant tout en étant réparties de manière égale autour du tas de sable, de façon à ce que chacune d'entre elles soit visible sur chaque photographie.

3.2.1.2. Prise des photographies

36 photographies ont été prises autour du tas de sable, soit une tous les 10 degrés. Après chaque cliché, le disque a subi une légère rotation de 10 degrés dans le sens horlogique, sans occasionner de mouvement au sable supporté. Le trépied est donc resté immobile durant toute la procédure. Les photographies ont ensuite été transférées sur l'ordinateur pour traitement, sans subir aucune modification.

3.2.1.3. Propriétés EXIF des photographies

Les propriétés ci-dessous représentent une moyenne de l'ensemble des clichés.

Marque de l'appareil photo :	Nikon
Modèle de l'appareil photo :	Coolpix S3500
Définition :	5152 x 3864 pixels
ISO :	140
Temps d'exposition :	1/30 secondes
Longueur de focale :	11 mm
Focale :	F/4.4
Flash :	non
Nombre de photos :	36
Distance entre l'appareil photo et l'objet :	0.55 m
Taille totale des photographies :	289 Mo
3.2.1.4. Mesure des cibles

Lorsque les cibles ne sont pas connues en coordonnées, la méthode la plus précise pour obtenir une échelle est de mesurer les distances qui les séparent. Ces distances ont été mesurées à l'aide d’une latte à échelle, au 1/50ᵉ, puis multipliées par deux pour revenir au centimètre, afin d’obtenir une précision du demi millimètre (estimation au quart de millimètre).

![Image de mesure des cibles](Figure 19 : Mesure de la distance entre les cibles (Source : personnelle))

<table>
<thead>
<tr>
<th>Cibles</th>
<th>Distances au 1/50ᵉ</th>
<th>Distances réelles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 et 2</td>
<td>5.77 cm</td>
<td>11.54 cm</td>
</tr>
<tr>
<td>2 et 3</td>
<td>6.11 cm</td>
<td>12.22 cm</td>
</tr>
<tr>
<td>3 et 4</td>
<td>6.67 cm</td>
<td>13.34 cm</td>
</tr>
<tr>
<td>4 et 5</td>
<td>5.48 cm</td>
<td>10.96 cm</td>
</tr>
<tr>
<td>5 et 6</td>
<td>6.15 cm</td>
<td>12.30 cm</td>
</tr>
<tr>
<td>6 et 1</td>
<td>6.72 cm</td>
<td>13.44 cm</td>
</tr>
</tbody>
</table>

3.2.1.5. Durée de la préparation

<table>
<thead>
<tr>
<th>Etapes</th>
<th>Durées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positionnement des cibles</td>
<td>0:05:00</td>
</tr>
<tr>
<td>Prise des photographies</td>
<td>0:05:00</td>
</tr>
<tr>
<td>Mesure des cibles</td>
<td>0:05:00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0:15:00</td>
</tr>
<tr>
<td>TOTAL GLOBAL</td>
<td>0:15:00</td>
</tr>
</tbody>
</table>

Test préliminaire

DEPLANCKE Michaël
3.2.2. Test photogrammétrique 1: Agisoft Photoscan

3.2.2.1. Définition des points de référence

Les 6 points de référence ont été positionnés sur les 6 cibles présentes sur les 36 photographies, donnant un total de 216 points. Leur précision dépend de la définition de l'écran de l'ordinateur (précision d'un pixel) et du zoom lors du positionnement.

3.2.2.2. Création du nuage de points clairsemé

J’ai choisi de ne pas créer de masques pour les photographies, cette étape permettant d’en éliminer certaines zones mais étant fastidieuse et amenant des imprécisions dues aux outils utilisés. Bien que ce choix demande un plus long temps de traitement, il en résulte également un gain de temps, le modèle devant obligatoirement être nettoyé, que des masques aient ou non été créés.

- Nombre de points générés : 228 029
3.2.2.3. Définition de l’échelle

Les 6 distances préétablies ont été définies entre les 6 points de référence le logiciel définissant ensuite automatiquement l'échelle dans un système de coordonnées local.

Ci-dessous se trouvent les erreurs d'échelles. La reconstruction automatique étant indéformable, ces erreurs représentent les écarts entre les distances réelles et les distances mesurées par le logiciel sur le modèle numérique créé. Elles sont principalement dues aux erreurs de reconstruction et au positionnement automatique des marqueurs, et peuvent être amoindries en repositionnant ces derniers manuellement sur les cibles.

<table>
<thead>
<tr>
<th>Cibles</th>
<th>Distances</th>
<th>Erreurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 et 2</td>
<td>0.1154 m</td>
<td>-0.000076 m</td>
</tr>
<tr>
<td>2 et 3</td>
<td>0.1222 m</td>
<td>0.000080 m</td>
</tr>
<tr>
<td>3 et 4</td>
<td>0.1334 m</td>
<td>-0.000007 m</td>
</tr>
<tr>
<td>4 et 5</td>
<td>0.1096 m</td>
<td>0.000149 m</td>
</tr>
<tr>
<td>5 et 6</td>
<td>0.1230 m</td>
<td>0.000014 m</td>
</tr>
<tr>
<td>6 et 1</td>
<td>0.1344 m</td>
<td>-0.000180 m</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.000106 m</td>
<td>0.106 mm</td>
</tr>
</tbody>
</table>

3.2.2.4. Création du maillage

Figure 22 : De gauche à droite : Maillage monochrome, Maillage coloré (Source : personnelle)

- Nombre de faces générées : 1 829 075
3.2.2.5. Nettoyage du modèle numérique

Figure 23 : De gauche à droite : Maillage nettoyé monochrome, Maillage nettoyé coloré (Source : personnelle)
- Nombre de faces restantes : 886 705

3.2.2.6. Fermeture des vides

Figure 24 : De gauche à droite : Fond du cône non fermé, Fond du cône fermé (Source : personnelle)
- Nombre de points restants : 249 440
- Nombre de faces restantes : 889 734
3.2.2.7. Création des textures

![Modèle texturé](source)

Figure 25 : Modèle texturé (Source : personnelle)

3.2.2.8. Mesures automatiques

- Volume du modèle : 0.000633 m³

3.2.2.9. Export 3D du modèle numérique

- Extension du modèle : .3ds
- Taille du fichier .3ds (maillage) : 20.6 Mo
- Taille du fichier .png (textures) : 27.2 Mo
- Taille du fichier .psz (Photoscan) : 110.0 Mo

3.2.2.10. Calcul de la masse du tas de sable

<table>
<thead>
<tr>
<th>Masse volumique apparente du sable</th>
<th>1689.306 kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse du tas de sable</td>
<td>1689.306 x 0.000633 = 1.069 kg</td>
</tr>
</tbody>
</table>
3.2.2.11. Durée du test photogrammétrique

<table>
<thead>
<tr>
<th>Etapes</th>
<th>Durées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Définition des points de référence</td>
<td>0:25:00</td>
</tr>
<tr>
<td>Création du nuage de points clairsemé</td>
<td>0:01:00</td>
</tr>
<tr>
<td>Définition de l’échelle</td>
<td>0:05:00</td>
</tr>
<tr>
<td>Création du maillage</td>
<td>0:01:00</td>
</tr>
<tr>
<td>Nettoyage du modèle numérique</td>
<td>0:15:00</td>
</tr>
<tr>
<td>Fermeture des vides</td>
<td>0:01:00</td>
</tr>
<tr>
<td>Création des textures</td>
<td>0:01:00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0:49:00</td>
</tr>
<tr>
<td>TOTAL GLOBAL</td>
<td>4:35:00</td>
</tr>
</tbody>
</table>

Durées

<table>
<thead>
<tr>
<th>Etapes</th>
<th>Durées</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>0:49:00</td>
</tr>
<tr>
<td>TOTAL GLOBAL</td>
<td>5:24:00</td>
</tr>
</tbody>
</table>
3.2.3. Test photogrammétrique 2: VisualSFM et MeshLab

3.2.3.1. Alignement des photographies (VisualSFM)

Figure 26 : Miniatures des photographies alignées (Source : personnelle)

3.2.3.2. Création du nuage de points clairsemé

Figure 27 : Nuage de points clairsemé (Source : personnelle)

- Nombre de points générés : 54 587
3.2.3.3. Création du nuage de points dense

- Nombre de points générés : 665 929

3.2.3.4. Définition de l’échelle

Une définition des coordonnées de minimum deux points sélectionnés parmi ceux composant le nuage de points dense est nécessaire pour donner une échelle au modèle. Je me suis donc servi de la distance entre deux de ces points comme suit :

<table>
<thead>
<tr>
<th>Cible</th>
<th>Coordonnées (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.1154</td>
</tr>
</tbody>
</table>
3.2.3.5. Nettoyage du nuage de points dense

Figure 30 : Nuage de points nettoyé (Source : personnelle)

- Nombre de points restants : 548 860
- Taille des fichiers VisualSFM : 546 Mo

3.2.3.6. Création du maillage (méthode de Poisson) (MeshLab)

Figure 31 : De gauche à droite : Nuage de points visible après la création du maillage, Maillage généré (Source : personnelle)

- Nombre de faces générées : 1 508 164

Beaucoup de faces non nécessaires ont été générées et doivent par conséquent être supprimées.
3.2.3.7. Nettoyage du modèle numérique

![Figure 32 : Modèle numérique nettoyé (Source : personnelle)](image)

- Nombre de points restants : 741 907
- Nombre de faces restantes : 1 481 636
- Taille des fichiers MeshLab : 600 octets

3.2.3.8. Export 3D du modèle numérique

- Extension du modèle : .obj
- Taille du fichier .obj (maillage) : 113 Mo
- Taille des textures : aucune

3.2.3.9. Durée du test photogrammétrique

<table>
<thead>
<tr>
<th>Etapes</th>
<th>Durées</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TM</td>
</tr>
<tr>
<td>Alignement des photographies</td>
<td>0:01:00</td>
</tr>
<tr>
<td>Création du nuage de points clairsemé</td>
<td>0:01:00</td>
</tr>
<tr>
<td>Création du nuage de points dense</td>
<td>0:01:00</td>
</tr>
<tr>
<td>Définition de l’échelle</td>
<td>0:05:00</td>
</tr>
<tr>
<td>Nettoyage du nuage de points dense</td>
<td>0:15:00</td>
</tr>
<tr>
<td>Création du maillage</td>
<td>0:01:00</td>
</tr>
<tr>
<td>Nettoyage du modèle numérique</td>
<td>0:10:00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0:34:00</td>
</tr>
<tr>
<td>TOTAL GLOBAL</td>
<td></td>
</tr>
</tbody>
</table>
3.3. **Mesures des modèles numériques**

Ces mesures ont été effectuées à l'aide du logiciel Geomagic Verify Viewer.

3.3.1. **Mesures du modèle numérique d’Agisoft Photoscan**

Figure 33 : De gauche à droite : Emplacement de la section, Mesure de la hauteur du cône au niveau de la section (Source : personnelle)

Figure 34 : Mesures des diamètres du cône (Source : personnelle)
3.3.1.1. **Calcul du volume**

Le rayon de la base et la hauteur du cône ont été mesurés grâce à une section passant par le centre du cône.

<table>
<thead>
<tr>
<th>Hauteur du cône</th>
<th>5.5 cm = 0.055 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamètre de la base</td>
<td>(19.9 + 19.6) / 2 = 19.8 cm = 0.198 m</td>
</tr>
<tr>
<td>Rayon de la base</td>
<td>0.198 / 2 = 0.099 m</td>
</tr>
<tr>
<td>Volume</td>
<td>0.000558 m³</td>
</tr>
</tbody>
</table>

Taille du fichier .xov (Geomagic Verify Viewer) : 35.9 Mo

3.3.1.2. **Calcul de la masse**

| Masse volumique apparente du sable | 1689.306 kg/m³ |
| Masse du tas de sable | 1689.306 x 0.000558 = 0.943 kg |

3.3.1.3. **Durée de la mesure du modèle numérique**

<table>
<thead>
<tr>
<th>Etapes</th>
<th>Durées</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TM</td>
</tr>
<tr>
<td>Calcul du volume</td>
<td>0:05:00</td>
</tr>
<tr>
<td>Calcul de la masse</td>
<td>0:01:00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0:06:00</td>
</tr>
<tr>
<td>TOTAL GLOBAL</td>
<td></td>
</tr>
</tbody>
</table>
3.3.2. Mesures du modèle numérique de VisualSFM et MeshLab

Figure 35 : Cône mesuré (Source : personnelle)

3.3.2.1. Calcul du volume

Le rayon de la base et la hauteur du cône ont été mesurés automatiquement par le logiciel. Les textures éventuelles ne sont par contre pas visibles.

Figure 36 : Mesures automatiques du modèle numérique (Source : personnelle)

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauteur du cône</td>
<td>6.9 cm</td>
</tr>
<tr>
<td></td>
<td>0.069 m</td>
</tr>
<tr>
<td>Diamètre de la base</td>
<td>24.6 + 24.8 / 2 = 24.7 cm = 0.247 m</td>
</tr>
<tr>
<td>Rayon de la base</td>
<td>0.247 / 2 = 0.124 m</td>
</tr>
<tr>
<td>Volume</td>
<td>0.001102 m³</td>
</tr>
</tbody>
</table>

- Taille du fichier .xov (Geomagic Verify Viewer) : 59.4 Mo
3.3.2.2. *Calcul de la masse*

<table>
<thead>
<tr>
<th>Masse volumique apparente du sable :</th>
<th>1689.306 kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse du tas de sable :</td>
<td>1689.306 x 0.001102 = 1.861 kg</td>
</tr>
</tbody>
</table>

3.3.2.3. *Durée de la mesure du modèle numérique*

<table>
<thead>
<tr>
<th>Étapes</th>
<th>Durées</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TM</td>
</tr>
<tr>
<td>Calcul du volume</td>
<td>0:03:00</td>
</tr>
<tr>
<td>Calcul de la masse</td>
<td>0:02:00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0:05:00</td>
</tr>
<tr>
<td>TOTAL GLOBAL</td>
<td></td>
</tr>
</tbody>
</table>
3.4. **Tableaux comparatifs des résultats**

Test manuel

<table>
<thead>
<tr>
<th>Mesures réelles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logiciel utilisé : X</td>
</tr>
<tr>
<td>Nombre de points : X</td>
</tr>
<tr>
<td>Nombre de faces : X</td>
</tr>
<tr>
<td>Taille du fichier test : X</td>
</tr>
<tr>
<td>Taille de l'export 3D : X</td>
</tr>
<tr>
<td>Volume total : 0.000559 m³</td>
</tr>
<tr>
<td>Masse totale : 0.944 kg</td>
</tr>
<tr>
<td>Durée totale du test : 00:15</td>
</tr>
</tbody>
</table>

Tests photogrammétriques

<table>
<thead>
<tr>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logiciel utilisé : Agisoft Photoscan</td>
<td>Logiciels utilisés : VisualSFM + MeshLab</td>
</tr>
<tr>
<td>Nombre de points : 249 440</td>
<td>Nombre de points : 741 907</td>
</tr>
<tr>
<td>Nombre de faces : 889 734</td>
<td>Nombre de faces : 1 481 636</td>
</tr>
<tr>
<td>Taille du fichier test : 110 Mo</td>
<td>Taille des fichiers test : 546 Mo</td>
</tr>
<tr>
<td>Taille de l'export 3D : 47.8 Mo</td>
<td>Taille de l'export 3D : 113 Mo</td>
</tr>
<tr>
<td>Volume total : 0.000633 m³</td>
<td>Volume total : X</td>
</tr>
<tr>
<td>Masse totale : 1.069 kg</td>
<td>Masse totale : X</td>
</tr>
<tr>
<td>Durée totale du test : 0:57:00</td>
<td>Durée totale du test : 0:57:00</td>
</tr>
</tbody>
</table>

Mesures des modèles numériques

<table>
<thead>
<tr>
<th>Mesures du modèle Photoscan</th>
<th>Mesures du modèle VisualSFM + MeshLab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logiciel utilisé : Geomagic Viewer</td>
<td>Logiciel utilisé : Geomagic Viewer</td>
</tr>
<tr>
<td>Nombre de points : 249 440</td>
<td>Nombre de points : 741 907</td>
</tr>
<tr>
<td>Nombre de faces : 889 734</td>
<td>Nombre de faces : 1 481 636</td>
</tr>
<tr>
<td>Taille du fichier test : 35.9 Mo</td>
<td>Taille du fichier test : 59.4 Mo</td>
</tr>
<tr>
<td>Taille de l'export 3D : X</td>
<td>Taille de l'export 3D : X</td>
</tr>
<tr>
<td>Volume total : 0.000558 m³</td>
<td>Volume total : 0.001102 m³</td>
</tr>
<tr>
<td>Masse totale : 0.943 kg</td>
<td>Masse totale : 1.861 kg</td>
</tr>
<tr>
<td>Durée totale du test : 0:06:00</td>
<td>Durée totale du test : 0:05:00</td>
</tr>
</tbody>
</table>
3.5. **Conclusions du test**

Le test préliminaire avait pour objectif de tester les différents logiciels dans une situation contrôlée, afin de pouvoir déterminer une marche à suivre pour les tests suivants, mais également dans le but de déterminer la provenance d'éventuelles erreurs futures.

Bien que le nombre de points et de faces générés par le logiciel Agisoft Photoscan soient inférieurs à ceux créés par l'association de VisualSFM et Meshlab, le résultat du calcul du volume par ce logiciel est assez proche de la réalité. L'outil de calcul automatique intégré présente néanmoins quelques défauts. L'erreur dans ce cas est de 74 cm3 sur un total de 559 cm3, ce qui équivaut à 13.24% du volume de sable. Or les mesures effectuées manuellement avec le logiciel Geomagic Verify Viewer sur le modèle généré par Photoscan ne donnent qu'une erreur (négligeable) de 1 cm3.

Contrairement au logiciel Photoscan, l'association de VisualSFM et MeshLab offre un résultat peu convaincant. Ceux-ci étant gratuits, les outils qui y sont incorporés sont (à première vue) moins performants que pour un logiciel payant, que ce soit pour la mise à échelle de VisualSFM ou la création du maillage de MeshLab, deux fonctions qui sont selon moi responsables des énormes différences présentes lors de ce test. L'erreur sur la mesure du volume est ici de 543 cm3, ce qui équivaut tout de même à 97.14% du volume total mesuré. Pourtant, aucune fausse manipulation n'a été effectuée.

Cependant, ces résultats ne peuvent être interprétés comme définitifs. En plus de n'être qu'un test préliminaire, celui-ci s'est déroulé avec un modèle numérique assez petit. Les erreurs potentielles sont donc amplifiées. C'est pourquoi les comparaisons essentielles seront réalisées sur des superficies bien plus importantes, ce qui diminuera les erreurs dues au nettoyage et permettra de visualiser celles présentes dans une situation correspondant à un levé topographique conventionnel.

Il ressort donc de ce test certaines remarques importantes. Premièrement, le logiciel Agisoft Photoscan fonctionne correctement et donne des résultats proches des mesures réelles. En second lieu, l'association des logiciels VisualSFM et MeshLab, bien que présentant un temps de traitement nettement moindre, est loin d'atteindre le même niveau de perfection. Il semble ainsi que des erreurs pourraient être rencontrées lors des étapes de reconstruction. Le traitement pourrait à ce moment être volontairement interrompu en raison de certains paramètres non modifiables. Enfin, la marche à suivre a pu être affinée, de manière à exécuter les bonnes actions aux bons moments durant les tests plus importants. Suite à ce premier chapitre, j'ai également discerné certains manques et me suis posé plusieurs questions supplémentaires, qui vont maintenant être développées avant d'enchaîner sur les deux tests principaux.
4. **Logiciel d’optimisation du nombre de photographies**

4.1. **Besoins ressentis suite au test préliminaire**

Le test préliminaire a mis en évidence plusieurs manquements. Tout d’abord, les cibles utilisées se révèlent peu efficaces en cas de mouvement ou au fur et à mesure que l’opérateur s’éloigne de l’objet photographié. Bien qu’elles puissent paraître plus précises, les pointes des triangles s’estompent à mesure que la distance de prise de vue augmente. J’ai donc réalisé et testé de nouvelles cibles pour les tests ultérieurs. Elles se composent de deux triangles, un rouge et un noir, permettant de distinguer plus facilement leur point d’intersection. J’ai également envisagé un amincissement du bord extérieur des triangles en vue de réduire la consommation d’encre lors de l’impression, mais cela diminue la visibilité à longue distance.

Les deux cibles ci-après ont été photographiées à 10 mètres de distance avec un APN Nikon Coolpix S3500 déposé sur le sol. Elles mesurent 8 centimètres de côté pour l’ancienne cible et de 8 centimètres de diagonale pour le nouveau modèle.

Figure 37 : De gauche à droite : Ancienne cible photographiée à 10 mètres de distance, Nouvelle cible (Source : personnelle)
Hormis ce premier point, la question la plus importante à se poser intervient au niveau du recouvrement des photographies, ce qui influe donc sur leur nombre. En effet, si ce recouvrement est trop faible, les logiciels peuvent commettre des erreurs de reconnaissance ou négliger certains clichés, tandis que s'il est trop important, le volume de données à traiter peut être inutilement augmenté.

Comme cela est visible ci-dessous, avec un recouvrement total, le nombre de photographies influe sur la précision du modèle généré. Je pense donc qu'il est essentiel de connaître le recouvrement minimum nécessaire à l'obtention d'un modèle "minimum", afin de pouvoir ensuite augmenter le nombre de clichés si une plus grande précision s'avère nécessaire.

![Figure 38](image.png)

Figure 38 : De gauche à droite : 3, 6, 9 photographies (Villa des Fleurs, Rue des Coteaux, 4800 Verviers), avec un recouvrement de 100% (Source : personnelle)

En marge de ce travail, j'ai donc développé un logiciel permettant de définir et d'ajuster le recouvrement des photographies en fonction des différents paramètres entrant en compte. Il me servira d'outil pour les tests ultérieurs.
4.2. Description du logiciel

J’ai développé ce logiciel, intitulé "GSP Optimizer", dans le langage de programmation orienté objet Visual Basic .NET. Cela lui permet d’être exécuté sous le système d’exploitation Windows, celui dont je me sers et qui est selon moi le plus étendu.

Une fois les données nécessaires entrées en haut de la fenêtre, les résultats s’affichent dans les quatre cadres inférieurs. Les distances recommandées en fonction des paramètres sélectionnés, le nombre de photographies nécessaires et le recouvrement réel sont visibles dans les deux derniers cadres.

Certaines données peuvent être sauvegardées pour un usage ultérieur. Différents outils permettent de rechercher les dimensions d’une photographie ou de calculer les dimensions de l’objet. Les résultats peuvent quant à eux être exportés au format .txt pour être lisibles par le plus grand nombre d’appareils sans nécessiter de logiciel complémentaire.
Figure 40 : De gauche à droite : Fenêtre de calcul des dimensions de l'objet, Exemple d'export au format .txt (Source : personnelle)

L'impression de cibles de différentes dimensions et de feuilles de notes pré-remplies fait également partie des menus.

Un dernier outil permet d'imprimer une grille de terrain, reprenant quelques distances entre les photographies en fonction de la distance séparant l'opérateur de l'objet. Les grilles de terrain des deux APN utilisés ont été imprimées et seront utilisées lors des tests ultérieurs.

Figure 41 : Grille de terrain (Source : personnelle)
4.3. **Vérification du logiciel**

Afin de vérifier la précision de mon logiciel, j'ai procédé à une expérimentation permettant de comparer le recouvrement réel avec celui donné par calcul.

Pour ce faire, j'ai réalisé une série de deux photographies à un intervalle correspondant à la distance donnée par le logiciel GSP Optimizer. Entre les deux clichés, l'APN a été déplacé le long d'une latte en plastique, en prenant le bord de l'écran de visualisation comme repère.

![Figure 42 : Vérification du logiciel GSP Optimizer (Source : personnelle)](image)

- **Double mètre pliant en bois**, positionné à 50 centimètres du centre du boîtier de l'APN, parallèlement à celui-ci.
- **Latte plastique de 40 centimètres de longueur**, maintenue solidement, utilisée pour le glissement de l'APN et la mesure des distances entre les photographies.
- **Appareil photo numérique Nikon Coolpix S3500**.

- Précision du placement des objets : 1 mm
- Précision de la mesure sur les photographies : $1/8^\text{mm}$
Etude de précision de la photogrammétrie terrestre appliquée aux levés topographiques

Figure 43 : Données entrées pour la vérification du logiciel GSP Optimizer (Source : personnelle)

Les dimensions de l’objet à photographier ont été exagérées, de manière à minimiser les arrondis effectués par le logiciel (distance et recouvrement), celui-ci se basant sur un nombre entier de photographies.

Figure 44 : De haut en bas : Photographie 1 effectuée pour la vérification du logiciel GSP Optimizer, Photographie 2 (Source : personnelle)

Logiciel d'optimisation du nombre de photographies
Photographie N°1 38.56 cm
Photographie N°2 44.98 cm
Distance entre les photographies : 6.4 cm
Recouvrement théorique : 60 %
Recouvrement réel : 60.05 %

L'écart de recouvrement est principalement dû à l'arrondi au centimètre de
la distance entre les photographies, ce logiciel étant destiné à être utilisé sur
terrain (et non à très courte distance) et aux mesures manuelles effectuées lors
du placement des objets utilisés.

La différence de 0.05% obtenue ici montre que les calculs réalisés par le
logiciel sont corrects, autorisant son utilisation lors des tests ultérieurs.
4.4. Choix du recouvrement

Etant basés sur les mêmes algorithmes, presque tous les logiciels de photogrammétrie "automatisés" préconisent un recouvrement minimum de 60% entre les photographies. Cependant, il me semblait indispensable de vérifier que ce chiffre est réellement le meilleur équilibre entre vitesse d'exécution et qualité de travail. Pour ce faire, j'ai réalisé plusieurs séries de photographies à intervalles réguliers, en faisant glisser l'APN sur une distance totale de 1.90m. Les recouvrements non pertinents de 0 et 100% ont bien sûr été négligés.

Figure 45 : Matériel utilisé pour l'expérimentation des recouvrements (Source : personnelle)

- a. Tréteaux métalliques réglables, utilisés pour le soutien du dispositif.
- b. Niveau métallique de 2m de longueur, maintenu solidement aux tréteaux, utilisé pour le glissement à plat de l'APN et pour l'alignement du double mètre.
- c. Double mètre pliant en bois, utilisé pour la mesure des distances entre les photographies, positionnant le centre boitier de l'APN parallèlement au mur et à 50cm de celui-ci.
- d. Serre-joints utilisés pour la fixation temporaire du dispositif.
- e. Appareil photo numérique Nikon Coolpix S3500. Le bord de l'écran sert de mesureur de distance.
- f. Mur en briques photographié.

- Précision du placement de l'APN : 1 mm
Les images ci-dessus représentent les modèles texturés et maillages simples générés (avec le logiciel Agisoft Photoscan) en fonction des recouvrements. L'échelle n'est pas identique pour tous les groupes, de manière à percevoir clairement les défauts des petites images.
Le tableau ci-dessous compare de manière quantitative les propriétés des maillages générés. Le recouvrement de 60% a été pris comme référence.

<table>
<thead>
<tr>
<th>Photographies</th>
<th>Points</th>
<th>Faces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recouvrement</td>
<td>Nombre</td>
<td>Entraxe</td>
</tr>
<tr>
<td>10 %</td>
<td>4</td>
<td>0.594 m</td>
</tr>
<tr>
<td>20 %</td>
<td>4</td>
<td>0.528 m</td>
</tr>
<tr>
<td>30 %</td>
<td>5</td>
<td>0.462 m</td>
</tr>
<tr>
<td>40 %</td>
<td>5</td>
<td>0.396 m</td>
</tr>
<tr>
<td>50 %</td>
<td>6</td>
<td>0.330 m</td>
</tr>
<tr>
<td>60 %</td>
<td>8</td>
<td>0.264 m</td>
</tr>
<tr>
<td>70 %</td>
<td>10</td>
<td>0.198 m</td>
</tr>
<tr>
<td>80 %</td>
<td>15</td>
<td>0.132 m</td>
</tr>
<tr>
<td>90 %</td>
<td>29</td>
<td>0.066 m</td>
</tr>
</tbody>
</table>

Les résultats obtenus démontrent que le recouvrement de 60% défini comme minimum est entièrement justifié. En deçà, aucun travail sérieux n'est possible. Au-delà par contre, une amélioration de 15% en moyenne est visible à chaque palier. Cependant, au vu des résultats probants à cette valeur et pour ne pas donner l'avantage à une méthode par rapport à une autre, le recouvrement de 60% sera conservé pour la suite de ce travail.
5. Logiciel de recherche de propriétés des photographies

5.1. Besoins ressentis suite au test préliminaire

Au cours du test préliminaire, toutes les photographies ont été prises avec une illumination (naturelle et artificielle) constante. Or, lors d’un travail en extérieur, les conditions évoluent souvent, notamment via l’apparition de nuages ou de pluie, ou selon la position par rapport à l’objet photographié. Il est donc selon moi nécessaire d’évaluer la qualité des images avant le rangement du matériel, si possible en quelques minutes et grâce à un simple ordinateur portable.

En marge de ce travail, j’ai donc développé un second logiciel permettant de visualiser rapidement l’ensemble des propriétés d’une série de photographies, de manière à pouvoir repérer d’éventuelles pertes de qualité et ainsi être en mesure d’effectuer de nouvelles prises de vue si cela s’avère nécessaire. Il me servira d’outil pour les tests ultérieurs.

5.2. Description du logiciel

![Figure 47 : Fenêtre principale du logiciel GSP Properties (Source : personnelle)](image-url)

Logiciel de recherche de propriétés des photographies
Tout comme le précédent, j'ai développé ce logiciel, intitulé "GSP Properties", dans le langage de programmation orienté objet Visual Basic .NET, ce qui lui permet d'être exécuté sous le système d'exploitation Windows.

L'unique tâche consiste à choisir le dossier contenant les photographies, qui seront ensuite listées dans la partie droite de la fenêtre. Les propriétés varient automatiquement pour s'adapter à la sélection en cours et peuvent être consultées instantanément. Il est également possible d'exporter les propriétés d'une image ou de l'ensemble de celles qui ont été sélectionnées au format .txt.
6. Influences sur la restitution photogrammétrique

6.1.1. Influence du matériel informatique

6.1.1.1. Ordinateur

Compte tenu de la grande quantité de données à traiter, l'utilisation du meilleur ordinateur paraît toute indiquée pour le traitement photogrammétrique. Afin de comparer les diverses machines à ma disposition, une série de photographies ont été prises puis traitées de manière identique sur ces ordinateurs, de manière à créer le modèle numérique ci-dessous. Il en ressort une grande différence entre les durées partielles et totales, qui varient du simple au quadruple. Le choix d'un bon outil de travail et de ses composants n'est donc pas une étape à prendre à la légère.

Figure 48 : De haut en bas : Modèle texturé, Maillage simple du Palais de Justice de Verviers (Rue Paul Janson, 4800 Verviers) (Source : personnelle)
Etude de précision de la photogrammétrie terrestre appliquée aux levés topographiques

<table>
<thead>
<tr>
<th>Nuage de points</th>
<th>Maillage</th>
<th>Texture</th>
<th>Durée totale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Points</td>
<td>Faces</td>
<td>Durée</td>
</tr>
<tr>
<td>Ordinateur portable HP G62 Notebook</td>
<td>107 798</td>
<td>24 202 927</td>
<td>0:40:32</td>
</tr>
<tr>
<td>Ordinateur de bureau Acer Aspire M1935</td>
<td>107 818</td>
<td>24 395 912</td>
<td>0:18:02</td>
</tr>
<tr>
<td>Ordinateur de bureau Micro Fi</td>
<td>107 668</td>
<td>24 572 478</td>
<td>0:14:32</td>
</tr>
<tr>
<td>Ordinateur de bureau Priminfo</td>
<td>107 706</td>
<td>24 270 294</td>
<td>0:06:40</td>
</tr>
</tbody>
</table>

Nombre de photographies : 31

Parallèlement aux différences remarquables au niveau des durées de traitement, le nombre de points et de faces varie lui aussi en fonction de l'ordinateur. Cela est principalement dû aux calculs opérés par les composants internes utilisés pour ces traitements. Lors du travail avec un grand nombre de photographies, des problèmes, voire un arrêt du processus, peuvent apparaître. Un bon poste de travail est donc un investissement sûr dans l'exercice de la photogrammétrie.

6.1.1.2. Ressources utilisées

Les logiciels utilisés ont besoin de divers types de ressources au fur et à mesure des traitements photogrammétriques. Ci-après se trouve un tableau regroupant les étapes principales et les valeurs moyennes des ressources utilisées lors du déroulement de celles-ci.

Ces résultats peuvent varier en fonction de la qualité du matériel utilisé et du nombre d’images traitées.

Création du nuage de points	100%	9%
Création du maillage	100%	10%
Création des textures	50%	34%
Affichage 3D	0%	21%
Mesures, coupes	10%	21%

Nombre de photographies : 8 et 11

Il ressort de ces observations que le processeur est utilisé au maximum lors des calculs de reconstruction, tandis que la mémoire physique sert à la visualisation du modèle.
6.1.2. Influence des conditions de travail

En théorie, la photogrammétrie permet de mesurer tout ce qu’il est possible de photographier.

Cependant, certaines conditions de travail ne permettent pas d’obtenir un résultat satisfaisant. En effet, le cerveau humain est capable de discerner certaines irrégularités et de les corriger afin de faire correspondre ce que l’œil voit avec une réalité connue. En photogrammétrie, le couple formé par l’appareil photo numérique et le logiciel de traitement ne peut réagir de la sorte. Il faut donc penser à la place de ces instruments et prendre les clichés de la manière la plus appropriée.

Ci-après sont repris quelques exemples de situations problématiques.

6.1.2.1. Surface transparente ou réfléchissante

Dans le cas d’une vitre par exemple, seuls les objets réfléchis ou vus par transparence sont pris en compte, et non la paroi elle-même. Notre cerveau nous permet de faire la différence entre un reflet et la surface sur laquelle il se produit, mais les algorithmes actuellement développés ne sont pas encore capables de gérer ce type d’information.

Figure 49 : Photographie d’une vitre en verre (Source : personnelle)
6.1.2.2. Effet de bord

Même si le soleil n'est pas directement visible, un effet de bord est toujours présent lors de photographies sur un fond lumineux. Cela entraîne une perte de précision plus ou moins grande aux bords du modèle, ainsi qu'une extension non désirée du maillage. Ceci peut également être le cas sur un fond non lumineux, certains points proches du bord de l'objet étant parfois sélectionnés sur l'arrière-plan.

![Figure 50 : De gauche à droite : Effet de bord fort, Effet de bord faible (Source : personnelle)](image)

6.1.2.3. Contre-jour

Contrairement à un effet de bord, lorsqu'il y a contre-jour, le soleil est directement visible sur la photographie. En plus d'une dégradation des bords, cela entraîne une perte de précision générale sur l'image aux endroits traversés par les rayons du soleil.

![Figure 51 : Photographie à contre-jour (Source : personnelle)](image)
6.1.2.4. Pluie

Quel que soit le moyen de mesure utilisé, le travail sous la pluie n'est jamais idéal. Dans le cas de la photogrammétrie, en plus d'une perte de qualité résultant du passage fréquent de gouttelettes de pluie entre l'appareil et l'objet, de l'eau peut également se déposer sur l'objectif, rendant une partie de l'image inutilisable. Une lentille griffée ou abîmée produit approximativement le même effet.

Figure 52 : De gauche à droite : Photographie normale, Photographie avec la présence d'une gouttelette d'eau sur l'objectif (Source : personnelle)

6.1.2.5. Répétition

Les logiciels automatisés se basant sur la couleur et l'emplacement des pixels caractéristiques des images, une scène trop répétitive peut amener à un résultat non exploitable. Dans ce cas, il est conseillé de positionner des marques, objets... permettant une reconnaissance aisée des diverses parties photographiées.

Figure 53 : Toiture de la gare de Liège-Guillemins (Source : personnelle)
6.1.2.6. Surface uniforme

Tout comme l'exemple précédent, une surface uniforme avec une basse fréquence d’alternance de couleurs ou qui manque de caractéristiques fortes peut amener à l'échec du traitement photogrammétrique. Les solutions sont simples : prendre des photographies plus rapprochées, de manière à distinguer les irrégularités naturelles de la surface, ou plus éloignées, afin de bénéficier d'autres objets dans les alentours, permettant ainsi une reconnaissance aisée par le logiciel.

![Image 1](image1.png)

Figure 54 : De gauche à droite : Photographie d'un mur peint à une distance de 30cm (0 points trouvés), Photographie à 10cm avec vue globale des points caractéristiques (2198 points utilisés sur 2257 trouvés) (Source : personnelle)

6.1.2.1. Flash

En cas de trop faible luminosité, il est possible d'éclairer l'objet à photographier à l'aide de lampes ou en utilisant simplement le flash de l'APN. Néanmoins, un flash n’a qu'une portée limitée, l'image s’assombrissant et perdant en qualité au fur et à mesure que le photographe s’éloigne de l'objet, rendant plus compliqué l'appariement des images et diminuant la précision du modèle numérique.

![Image 2](image2.png)

Figure 55 : De gauche à droite : Photographie avec flash à 5 mètres, A 10 mètres (Source : personnelle)
6.1.2.1. Angle de prise de vue

Bien que les logiciels de photogrammétrie recommandent d'effectuer des prises de vue perpendiculairement à la surface photographiée, il arrive très souvent que cela ne soit pas possible en réalité. Le nombre de points caractéristiques est alors moins élevé pour une même surface, ce qui diminue la qualité du modèle créé.

Figure 56 : De haut en bas : Photographie à partir d’un angle proche de la verticale, Proche de l’horizontale (Source : personnelle)
6.1.2.2. Distance

La distance séparant l'APN de l'objet photographié n'est normalement pas un problème en soi. Cependant, pour une même focale, plus cette distance augmente, plus la superficie capturée augmente également, diminuant de ce fait la précision des clichés et la qualité du modèle numérique. Il faut donc veiller à trouver le bon compromis entre le nombre de photographies et le niveau de précision souhaité.

Figure 57 : De gauche à droite : Photographie du blason du Château de Modave à 10 mètres, A 20 mètres, A 30 mètres, A 40 mètres (Source : personnelle)

Pour contrer ce problème, il est possible de zoomer sur certaines parties de l'objet, qui seront alors plus détaillées. Les deux nuages de points clairsemés ci-dessous illustrent assez bien cette solution.

Figure 58 : De gauche à droite : Nuage de points à partir de 7 photographies générales, Avec ajout de 7 photographies de la tour gauche (Château de Modave, 4577 Modave) (Source : personnelle)

Dans le même ordre d'idée, il est également possible d'associer les clichés pris par différents APN.